Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Open questions remain around the Holocene variability of climate in Iceland, including the relative impacts of natural and anthropogenic factors on Late Holocene vegetation change and soil erosion. The lacustrine sediment record from Torfdalsvatn, north Iceland, is the longest known in Iceland (≤12000 cal a BP) and along with its high sedimentation rate, provides an opportunity to develop high-resolution quantitative records that address these challenges. In this study, we use two sediment cores from Torfdalsvatn to construct a high-resolution age model derived from marker tephra layers, paleomagnetic secular variation, and radiocarbon. We then apply this robust age constraint to support a complete tephrochronology (>2200 grains analyzed in 33 tephra horizons) and sub-centennial geochemical (MS, TOC, C/N, δ13C, and BSi) and algal pigment records. Along with previously published proxy records from the same lake, these records demonstrate generally stable terrestrial and aquatic conditions during the Early and Middle Holocene, except for punctuated disturbances linked to major tephra fall events. During the Late Holocene, there is strong evidence for naturally driven algal productivity decline beginning around 1800 cal a BP. These changes closely follow regional Late Holocene cooling driven by decreases in Northern Hemisphere summer insolation and the expansion of sea-ice laden Polar Water around Iceland. Then at 880 cal a BP, ~200 years after the presumed time of human settlement, a second shift in the record begins and is characterized by a strong uptick in landscape instability and possibly soil erosion. Collectively, the Torfdalsvatn record highlights the resilience of low-elevation, low-relief catchments to the pre-settlement soil erosion in Iceland, despite a steadily cooling background climate. The precisely dated, high-resolution tephra and paleoenvironmental record from this site can serve as a regional template for north Iceland.more » « less
-
The Vedde Ash, originating from the Katla central volcano, Iceland, and taken to be dispersed across the North Atlantic and Europe at ~ 12 ka BP, is widely used as a geochronological marker. However, distal tephra layers with compositions like the Vedde Ash but of younger ages question the reliability of Vedde-like tephra layers as robust age control. Vedde-like tephra layers are rare in Icelandic sedimentary sequences and, where present, lack firm age control. Providing well-constrained local records of Early Holocene Katla layers is therefore critical to assess uncertainties related to the use of the Vedde Ash. Here we report three visible and stratigraphically separated Early Holocene Katla tephra layers from Torfdalsvatn, a lake in north Iceland, each with chemistry similar to the Vedde Ash. Using high-resolution 14C chronologies, we provide ages (± 1σ) for these tephra layers of 11,315 ± 180, 11,295 ± 195, and 11,170 ± 195 cal a BP. These observations reinforce that multiple explosive eruptions of Katla occurred over a 1000-year interval in the Early Holocene and challenge the precision of some paleoclimate records using the Vedde Ash as a geochronometer where age control is equivocal. This may lead to a re-evaluation of age models for some Early Holocene North Atlantic records.more » « less
-
Abstract. As global warming progresses, changes in high-latitude precipitation are expected to impart long-lasting impacts on Earth systems, including glacier mass balance and ecosystem structures. Reconstructing past changes in high-latitude precipitation and hydroclimate from networks of continuous lake records offers one way to improve forecasts of precipitation and precipitation–evaporation balances, but these reconstructions are currently hindered by the incomplete understanding of controls on lake and soil water isotopes. Here, we study the distribution of modern water isotopes in Icelandic lakes, streams, and surface soils collected in 2002, 2003, 2004, 2014, 2019, and 2020 to understand the geographic, geomorphic, and environmental controls on their regional and interannual variability. We find that lake water isotopes in open-basin (through-flowing) lakes reflect local precipitation, with biases toward the cold season, particularly in lakes with sub-annual residence times. Closed-basin lakes have water isotope and deuterium excess values consistent with evaporative enrichment. Interannual and seasonal variabilities of lake water isotopes at repeatedly sampled sites are consistent with instrumental records of winter snowfall; summer relative humidity; and atmospheric circulation patterns, such as the North Atlantic Oscillation. Summer surface soil water isotopes span the entire range of seasonal precipitation values in Iceland and appear to be consistently overprinted by evaporative enrichment, which can occur throughout the year, although the sampling depths were shallower than rooting depths for many plant types. This dataset provides new insight into the functionality of water isotopes in Icelandic environments and offers renewed possibilities for optimized site selection and proxy interpretation in future paleohydrological studies on this North Atlantic outpost.more » « less
-
na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change.more » « less
-
Abstract. The observing system design of multidisciplinary fieldmeasurements involves a variety of considerations on logistics, safety, andscience objectives. Typically, this is done based on investigator intuitionand designs of prior field measurements. However, there is potential forconsiderable increases in efficiency, safety, and scientific success byintegrating numerical simulations in the design process. Here, we present anovel numerical simulation–environmental response function (NS–ERF)approach to observing system simulation experiments that aidssurface–atmosphere synthesis at the interface of mesoscale and microscalemeteorology. In a case study we demonstrate application of the NS–ERFapproach to optimize the Chequamegon Heterogeneous Ecosystem Energy-balanceStudy Enabled by a High-density Extensive Array of Detectors 2019(CHEESEHEAD19). During CHEESEHEAD19 pre-field simulation experiments, we considered theplacement of 20 eddy covariance flux towers, operations for 72 h oflow-altitude flux aircraft measurements, and integration of various remotesensing data products. A 2 h high-resolution large eddy simulationcreated a cloud-free virtual atmosphere for surface and meteorologicalconditions characteristic of the field campaign domain and period. Toexplore two specific design hypotheses we super-sampled this virtualatmosphere as observed by 13 different yet simultaneous observing systemdesigns consisting of virtual ground, airborne, and satellite observations.We then analyzed these virtual observations through ERFs to yield an optimalaircraft flight strategy for augmenting a stratified random flux towernetwork in combination with satellite retrievals. We demonstrate how the novel NS–ERF approach doubled CHEESEHEAD19'spotential to explore energy balance closure and spatial patterning scienceobjectives while substantially simplifying logistics. Owing to its modularextensibility, NS–ERF lends itself to optimizing observing system designs alsofor natural climate solutions, emission inventory validation, urban airquality, industry leak detection, and multi-species applications, among otheruse cases.more » « less
-
Abstract The National Ecological Observatory Network (NEON) is a multidecadal and continental-scale observatory with sites across the United States. Having entered its operational phase in 2018, NEON data products, software, and services become available to facilitate research on the impacts of climate change, land-use change, and invasive species. An essential component of NEON are its 47 tower sites, where eddy-covariance (EC) sensors are operated to determine the surface–atmosphere exchange of momentum, heat, water, and CO 2 . EC tower networks such as AmeriFlux, the Integrated Carbon Observation System (ICOS), and NEON are vital for providing the distributed observations to address interactions at the soil–vegetation–atmosphere interface. NEON represents the largest single-provider EC network globally, with standardized observations and data processing explicitly designed for intersite comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, EC is tightly integrated with soil, meteorology, atmospheric chemistry, isotope, phenology, and rich contextual observations such as airborne remote sensing and in situ sampling bouts. Here, we present an overview of NEON’s observational design, field operation, and data processing that yield community resources for the study of surface–atmosphere interactions. Near-real-time data products become available from the NEON Data Portal, and EC and meteorological data are ingested into AmeriFlux and FLUXNET globally harmonized data releases. Open-source software for reproducible, extensible, and portable data analysis includes the eddy4R family of R packages underlying the EC data product generation. These resources strive to integrate with existing infrastructures and networks, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities.more » « less
-
Abstract. Strong similarities in Holocene climate reconstructions derived from multipleproxies (BSi, TOC – total organic carbon, δ13C, C∕N, MS – magnetic susceptibility, δ15N)preserved in sediments from both glacial and non-glacial lakes across Icelandindicate a relatively warm early to mid Holocene from 10 to 6 ka,overprinted with cold excursions presumably related to meltwater impact onNorth Atlantic circulation until 7.9 ka. Sediment in lakes from glacialcatchments indicates their catchments were ice-free during this interval.Statistical treatment of the high-resolution multi-proxy paleoclimate lakerecords shows that despite great variability in catchment characteristics,the sediment records document more or less synchronous abrupt, colddepartures as opposed to the smoothly decreasing trend in Northern Hemispheresummer insolation. Although all lake records document a decline in summertemperature through the Holocene consistent with the regular decline insummer insolation, the onset of significant summer cooling occurs ∼5 ka at high-elevation interior sites but is variably later at sitescloser to the coast, suggesting that proximity to the sea may modulate the impactfrom decreasing summer insolation. The timing of glacier inception during themid Holocene is determined by the descent of the equilibrium line altitude(ELA), which is dominated by the evolution of summer temperature as summerinsolation declined as well as changes in sea surface temperature for coastalglacial systems. The glacial response to the ELA decline is also highlydependent on the local topography. The initial ∼5 ka nucleation ofLangjökull in the highlands of Iceland defines the onset of neoglaciationin Iceland. Subsequently, a stepwise expansion of both Langjökull andnortheast Vatnajökull occurred between 4.5 and 4.0 ka, with a secondabrupt expansion ∼3 ka. Due to its coastal setting and lowertopographic threshold, the initial appearance of Drangajökull in the NWof Iceland was delayed until ∼2.3 ka. All lake records reflect abruptsummer temperature and catchment disturbance at ∼4.5 ka, statisticallyindistinguishable from the global 4.2 ka event, and a second widespreadabrupt disturbance at 3.0 ka, similar to the stepwise expansion ofLangjökull and northeast Vatnajökull. Both are intervalscharacterized by large explosive volcanism and tephra distribution in Icelandresulting in intensified local soil erosion. The most widespread increase in glacier advance, landscapeinstability, and soil erosion occurred shortly after 2 ka, likely due to acomplex combination of increased impact from volcanic tephra deposition,cooling climate, and increased sea ice off the coast of Iceland. All lakerecords indicate a strong decline in temperature ∼1.5 ka, whichculminated during the Little Ice Age (1250–1850 CE) when the glaciersreached their maximum Holocene dimensions.more » « less
An official website of the United States government
